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a b s t r a c t

The question of whether layered sequences of sedimentary rock subjected to layer-parallel compression
will fold or fault is investigated by means of mechanical modelling using the Finite Element Method. The
model consists of a rigid basement, a weak visco-elasto-plastic décollement horizon and a relatively
competent elastic–plastic cover sequence. Syntectonic erosion and sedimentation on the surface are
included using a diffusion model. Numerical results show that folding is the dominant mode of defor-
mation when the décollement horizon is relatively thick and has a low viscosity, when the upper layer
has a relatively high elastic shear modulus and when the total thickness of the sequence is relatively
small. If any one of these conditions is not satisfied, faulting dominates. Other parameters such as the
angle of internal friction and cohesion influence the style of deformation but have little influence on the
boundary between folding and faulting. Results are interpreted in terms of competing deformation
instabilities. If fold amplification rates are large, folding dominates over faulting. If on the other hand,
fold amplification rates are small, faulting dominates because stresses intersect the failure surface before
significant fold amplification can occur.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

It is common knowledge that layered sequences of sedimentary
rock subjected to layer-parallel compression at relatively low
confining pressure and low temperature may either fold, fault, or
both fold and fault. For example, some regions such as the southern
Appalachian thrust belt (Harris and Milici, 1977) and the Chartreuse
massif in the French Alps (Philippe, 1994) have deformed primarily
by thrusting (Fig. 1a). Other regions such as the central Appalachian
Plateau (Gwinn, 1964) and the Fars zone in the Zagros (Fakhari,
1994) have deformed primarily by folding (Fig. 1c). These differ-
ences in the style of deformation are presumably related to the
differences in material properties and/or in the thickness and
distribution of layers with different strength (e.g., Pfiffner, 1993;
Philippe, 1994; Chester, 2003; Sepehr et al., 2006). For instance,
many fold belts contain a weak viscous décollement layer consist-
ing of salt or shale overlain by relatively strong carbonate rocks
(Davis and Engelder, 1985; Davis and Lillie, 1993). Thrust belts on
the other hand tend to lack thick viscous décollement horizons and
occur within relatively homogeneous sequences lacking major
changes in mechanical stratigraphy (Philippe, 1994). However,
analogue compression experiments performed on brittle–ductile
wedges containing a weak basal viscous layer sometimes (though
ll rights reserved.
not always) deform by faulting and not by folding (Cotton and Koyi,
2000; Costa and Vendeville, 2002; Smit et al., 2003; Bonini, 2007).
Moreover, folding can also occur in rocks exhibiting elastic–plastic
(as opposed to viscous) behaviour (Johnson, 1980; Erickson, 1996).
What then controls whether a sequence subjected to layer-parallel
compression deforms predominantly by folding or faulting?

Previous studies that have analyzed controls on faulting versus
folding have recognised that folding and faulting are different
responses of the same idealized material to different loading
conditions and properties. For example, on the basis of a linear
stability analysis, Johnson (1980) studied folding and faulting of
elastic–plastic materials and showed that when single layers of
sedimentary rock behave as strain-hardening materials they are
unlikely to fold, rather they fault, because contrasts in elasticity and
strength properties of sedimentary rocks are low. He also showed
that whereas multilayers of these same rocks fault rather than fold
if contacts are bonded, they fold if contacts are frictionless or have
a low yield strength. Erickson (1996) used a similar approach to
Johnson (1980) though he considered layers of finite thickness
instead of layers embedded within infinite media. Once again, this
study shows that the mechanical behaviour for elastic–plastic
material is determined by the plastic hardening modulus and the
elastic shear modulus and by the nature of the contacts between
different layers. Wissing et al. (2003) investigated the control that
different layer thicknesses have on the style of deformation in
a numerical model. They showed that folding is favored when the

mailto:guy.simpson@unige.ch
www.sciencedirect.com/science/journal/01918141
http://www.elsevier.com/locate/jsg


Eastern Chartreuse Massif

Southern Jura 

Zagros
Dalan anticlineGardan anticlineKhartang anticlineZereh anticlineNamak anticline

Epine anticline

Ratz anticline

SW

W

NE

E

W

E

0

0

0

5 km

5 km

5 km

a

b

c

Fig. 1. Examples of cross-sections (no vertical exaggeration) from fold–thrust belts where the deformation is dominated by (a) faulting (Philippe, 1994), (b) folding and faulting
(Philippe, 1994) and (c) folding (Fakhari, 1994). The Chartreuse Massif (French Alps) displays typical behaviour characteristic of a strong frictional décollement whereas the Jura
(France) was deformed above a viscous detachment consisting of Upper Triassic evaporites. In the Zagros section (from the Khormoj region of the Fars zone, Iran) deformation
occurs above a thick décollement zone comprising Paleozoic salt (Hormuz Series).
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weak detachment horizon is thick relative to the thickness of
individual competent layers, whereas faulting is dominant when
the weak detachment is relatively thin. Analogue studies with
visco-elasto-plastic materials have showed evidence for both
faulting and folding (Dixon and Liu, 1992; Cotton and Koyi, 2000;
Costa and Vendeville, 2002; Smit et al., 2003; Bonini, 2007) though
the factors controlling the transition between folding and faulting
remain poorly understood (Marques, 2008).

Understanding the controls on faulting and folding is compli-
cated by the fact that in many regions, faults and folds are closely
related in space and time (Fig. 1b). In such cases, fold/fault rela-
tionships are usually classified as one of three end-member styles:
fault-bend folding (Suppe, 1983), fault-propagation folding (Suppe
and Medwedeff, 1984; Chester and Chester, 1990) and detachment
folding (Laubscher, 1977; Jamison, 1987; Dahlstrom, 1990). In these
models, folding is normally viewed to be a consequence of, or
concurrent with, faulting which is considered as primary (see also
Goff et al., 1996 and Gerbault et al., 1999). An alternative possibility
is that folds may develop as primary buckling instabilities (Biot,
1961), while faults are secondary features produced after fold
locking (Fischer et al., 1992). This is consistent with both analogue
(Dixon and Liu, 1992) and theoretical studies (Johnson, 1980;
Jamison, 1992; Erickson, 1996) which demonstrate that material
response is a competition between two fundamentally different
deformation instabilities, folding and faulting.

The purpose of this paper is to better understand the factors
controlling the style of deformation in sedimentary sequences
subjected to layer-parallel compression. This is achieved by
employing a two-dimensional, plane strain mechanical model
including visco-elasto-plastic (Mohr–Coulomb) behaviour which is
solved numerically using the Finite Element Method (Simpson,
2006). The model is used to examine the influence of material
parameters and mechanical stratigraphy on the nature of defor-
mation and in particular on the transition from faulting to folding.
Whereas previous studies focusing on folding versus faulting have
been based on linear stability analyses (e.g., Johnson, 1980; Erick-
son, 1996), field work (e.g., Fischer et al., 1992; Chester, 2003) or
analogue modelling (Marques, 2008), the current work appears to
be one of the first to attempt a systematic investigation of this
problem using full mechanical modelling (see also Wissing et al.,
2003).
2. Mechanical model

The mathematical model employed in this study (Fig. 2) is
similar to that described by Simpson (2006) but is repeated here for
completeness.
2.1. Governing equations

The mechanical model is based on the Stokes equations for slow
creeping flow which is weakly compressible (due to elasticity). In
two dimensions the governing equations are the conservation of
momentum

vsij

vxi
þ rgj ¼ fj (1)

and the conservation of mass
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Fig. 2. Schematic diagram of model setup (a) and model rheology (b). The model (not drawn to scale) consists of a relatively competent, homogeneous elasto-plastic layer (with
thickness H1) overlying a weak visco-elasto-plastic décollement zone (with thickness H�H1). The right hand boundary is moved to the left with a constant velocity generating
deformation in the layered sequence. A no-slip condition is imposed at the interface between the weak layer and the rigid basement. The blue and black layers in the upper unit are
passive markers and do not have different properties. Deformation is elastic (in the upper layer) or visco-elastic (in the lower layer) when stresses are below the Mohr–Coulomb
failure envelope (i.e., F< 0) whereas it is also plastic when stresses satisfy the failure condition (i.e., F¼ 0). Stresses are returned to the failure envelope assuming non-associated
plasticity with a dilatancy angle of zero. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Notations.

Symbol Unit Explanation

sij Pa Total stresses
P Pa Rock pressure
~sij Pa Deviatoric stresses
_eij s�1 Total strain rates
_e s�1 Imposed strain rate
eij – Total strains
~eij – Deviatoric strains
x,y m Spatial coordinates
t s Time
u,y m s�1 Rock velocities
m Pa s Shear viscosity
K Pa Bulk modulus
G Pa Shear modulus
c0 Pa Cohesive strength of intact rock
f – Angle of internal friction
fb – Angle of internal friction in viscous layer
c – Ellipticity of finite strain ellipse
g – Strain weakening parameter
rg kg m�2 s�2 Specific weight
h m Elevation of the free surface
k m2 s�1 Surface process diffusivity
H m Initial thickness of model
H1 m Initial thickness of upper (elasto-plastic) layer
L m Initial length of model
R – m _e=K
S – G/K
B – rgH=K
C – c0=K
T – H1/H
E – k=H2 _e
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vui

vxi
þ vP

vt
1
K
¼ 0 (2)

where sij is the stress tensor (negative in compression), ui is the
velocity vector, P is the rock pressure, r is the density, K is the elastic
bulk modulus, gj is the acceleration due to gravity in the jth direction,
fj are additional loads (e.g., due to plastic deformation) and the
indices i and j take on the values 1 and 2 (see Table 1 for notation).

A coordinate system is adopted whereby x is horizontal and y is
vertical. Before introducing the rheological relations it is conve-
nient to decompose the stress and strain tensors into their dilata-
tional and deviatoric parts as follows

sii ¼ sxx þ syy þ szz (3)

~sij ¼ sij �
1
3

siidij (4)

eii ¼ exx þ eyy þ ezz (5)

~eij ¼ eij �
1
3

eiidij (6)

where tildes refer to deviatoric components and dij is the Kronecker
Delta which is 1 when i¼ j and 0 when i s j. In addition, the rock
pressure (positive in compression) is defined as

P ¼ �1
3

sii (7)

The rheology considered is visco-elasto-plastic (Fig. 2). It is
assumed that deviatoric components of deformation are governed
by the Maxwell visco-elastic model (see also Moresi et al., 2003).

v~eij

vt
¼
bsij

2G
þ

~sij

2m
(8)

where G is the elastic shear modulus, m is the shear viscosity and bsij
is the Jaumann corotational deviatoric stress rate defined as
bsij ¼
v~sij

vt
þ 1

2

�
wik~skj � ~sikwkj

�
(9)

where i,j,k¼ 1,2 and w is the material spin tensor with the form

wij ¼
vuj

vxi
� vui

vxj
(10)
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Introducing Equation (9) into (8) and discretising the stress deriv-
ative with an implicit finite difference approximation lead to the
following update equation for deviatoric stresses

~sij ¼ h
v~eij

vt
þ hq~s0

ij þ
hqdt

2

�
w0

ik~s0
kj � ~s0

ikw0
kj

�
(11)

where superscripts with 0 refer to quantities from the previous
time step, dt is the time step, h is the effective viscosity defined as

h ¼ 1
1=2mþ q

(12)

and

q ¼ 1
2Gdt

(13)

Volumetric deformation is modeled with a pure elastic model

sii ¼ 3Keii (14)

where K is the elastic bulk modulus. Differentiating with respect to
time and introducing the definition of pressure yield

vP
vt
¼ �K

�
_exx þ _eyy þ _ezz

�
(15)

which leads to the following pressure update equation

P ¼ P0 � dtK
�
_exx þ _eyy þ _ezz

�
(16)

where P0 is the rock pressure from the previous time step. Plastic
deformation is modeled with pressure sensitive Mohr–Coulomb
behaviour governed by the following yield function

F ¼ s* þ s* sin f� c cos f (17)

where c is the cohesive rock strength, f is the angle of internal
friction,

s* ¼ 1
2

�
sxx þ syy

�
(18)

and

s* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4

�
sxx � syy

�2þs2
xy

r
(19)

Deformation is visco-elastic when F< 0 and plastic when F� 0,
requiring stresses to be reduced such that F¼ 0 (Fig. 2b). Plasticity
is assumed to be non-associated with a dilatancy angle of zero,
implying no plastic volumetric strain. This formulation leads to
a particularly simple algorithm to return stresses of plastic points to
the yield surface

sxx ¼ s* þ 1
2

�
sxx � syy

�
b (20)

syy ¼ s* � 1
2

�
sxx � syy

�
b (21)

sxy ¼ sxyb (22)

where all stresses on the right hand side of Equations (20)–(22) are
understood to be old stresses (i.e., F> 0), whereas stresses on the
left satisfy F¼ 0, and

b ¼
		c cos f� s* sin f

		
s*

(23)
The difference between old stresses and new stresses on the failure
surface can be thought of as plastic stresses. These can be used to
compute out-of-balance plastic forces which can be added to the
right hand side load vector f in Equation (1). Thus, the approach
followed here is to perform repeated visco-elastic solutions with
stresses satisfying the plastic failure criteria and to achieve
convergence by iteratively varying the load vector f.

Strain weakening is incorporated by decreasing the cohesion in
a nonlinear fashion according to the function

c ¼ c0

1þ ðc�1Þ2
g

(24)

where c is the ellipticity of the finite strain ellipse, g is a non-
dimensional parameter describing how rapidly the cohesion
decreases as a function of strain and c0 is the cohesive strength of
intact rock. This simple law accounts for the fact that intact rock has
a finite cohesive strength whereas preexisting fractures do not.
Note that although strain localisation occurs even when no strain
weakening is included, it is incorporated here to enhance local-
isation and therefore to highlight the difference between folds and
faults.

Mass transport is incorporated on the upper surface of the
mechanical model using a linear diffusion equation (Culling, 1964).
When considered in the coordinate frame of the deforming upper
surface this equation can be written as

vh
vt
¼ k

v2h
vx2 (25)

where h is the surface elevation and k is a surface process diffu-
sivity. Implicit in this model is that the sediment flux is linearly
(inversely) proportional to the local topographic slope.
2.2. Numerical implementation

Combining the main governing equations leads to three rela-
tions (Equation (2) and the 2 equations of Equation (1)) for three
unknowns, two velocities and pressure. These equations are solved
using the Galerkin Finite Element Method (Zienkiewicz and Taylor,
2000) with a Lagrangian scheme using marker particles (see Sulsky
et al., 1995; Gerya and Yuen, 2003 for notation). This formulation
consists of two representations for the continuum, one based on
marker particles and the other based on the computational grid.
The marker particles are tracked throughout deformation and
provide a Lagrangian description that can sustain large deforma-
tion. Marker particles carry material properties without error while
they are advected. They also carry stresses, strains and any other
variables related to the deformation history. The computation grid
contains no permanent information and is continually modified to
track the external boundaries of the model domain. It is only used
to determine spatial gradients and to compute the new solution.
Information is continuously passed between the marker particles
and the computational grid using interpolation. Numerical diffu-
sion is minimized during the update of history variables (e.g.,
stresses) on marker points by only interpolating changes in the
variable rather than the entire variable itself (e.g., see also Gerya
and Yuen, 2003). Elements used were nine-node quadrilaterals for
velocities and four-node quadrilaterals for pressure, which are
assumed to be discontinuous. All calculations presented were
performed using 100 elements in the horizontal direction and 20
elements in the vertical direction. The number of marker particles
was a factor of 6 greater than the element resolution in each
direction. Increasing the resolution leads to sharper shear-zones
but changes little of the overall behaviour. The diffusion equation
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was also solved using the Galerkin Finite Element Method but using
linear weighting and shape functions and a total of w600 elements.
2.3. Boundary and initial conditions

Numerical solutions were computed with the following
boundary conditions (Fig. 2a): The right hand boundary was moved
to the left at a constant velocity (while the vertical velocity is set to
zero), no slip in both the horizontal and vertical directions was
imposed along the bottom boundary, the upper boundary is treated
as a free surface and the left hand boundary was fixed in the
horizontal direction, while allowing free slip in the vertical direc-
tion. Initial condition consisted of a lithostatic pressure distribution
and a horizontal upper surface. The sediment flux at both the left
and right boundaries was assumed to be zero. While the model
contains no variations in material properties, the fact that vertical
velocities are zero at the pushed boundary introduce a heteroge-
neity which ensures that the deformation does not remain
homogeneous.
2.4. Parameters and scaling

A simple two layer model consisting of an elasto-plastic
sequence overlying a weaker visco-elasto-plastic layer (Fig. 2a)
requires at least 12 physical parameters: _e (imposed strain rate), G
(elastic shear modulus), K (bulk modulus), c0 (cohesion of intact
rock), g (cohesion weakening parameter), f (angle of internal
friction in upper layer), fb, (angle of internal friction in lower layer),
rg (specific weight), m (viscosity), H1 (thickness of upper layer), H
(total thickness), k (surface process diffusivity). Material parame-
ters are considered to vary between the upper and lower layers but
are constant within each respective layer.

In order to study the general behaviour of the governing equa-
tions and to reduce the number of independent parameters it is
usual to compute solutions in non-dimensional form. To non-
dimensionalise the governing equations, the following character-
istic scales are adopted for time, stress, and length:

time ¼ 1
_e

(26)

stress ¼ K (27)

length ¼ H (28)

where _e is the imposed horizontal strain rate, K is the bulk modulus
and H is the initial total thickness of sequence. Scaling the gov-
erning equations leads to the following 9 dimensionless parame-
ters: R ¼ h _e=K , S¼G/K, B ¼ rgH=K , C¼ c0/K, T¼H1/H,
E ¼ k=ðH2 _eÞ, g, f and fb (see Table 1). The most important
parameters for this study are the dimensionless viscosity R, the
normalised elastic shear resistance S (ratio of elastic shear modulus
to volumetric modulus), the gravity parameter B and the thickness
ratio T. Parameter values for the various model runs are listed in
Table 2. The initial aspect ratio of the model was assumed to be 40
(i.e., L/H¼ 40).

All results presented in the following section are presented in
non-dimensional form. These can easily be converted to dimen-
sional form once characteristic scales are chosen. For example, if
the initial thickness of the model domain H (the characteristic
length scale) is chosen to be 3000 m and the imposed strain rate _e
(the inverse of the characteristic time scale) is chosen to be
10�15 s�1, then a non-dimensional uplift rate ~y of 16 equates to
y w 1.5 mm/year ði:e:; y ¼ ~yH _eÞ.
3. Numerical results

More than 140 compression experiments have been performed
to better understand controls on the style of deformation in brittle–
ductile wedges. Of these experiments, 34 different simulations are
presented here. Two main modes of deformation are recognised
which can be associated with faulting and folding. Note, however
the developed faults are strictly continuum features due to the
continuous nature of the solution technique (i.e., FEM).

This section begins with a brief description of the primary
characteristics pertaining to these different end-member modes.
This is followed by a more detailed investigation of the parameters
which influence the transition between faulting and folding.
Attention is focused on effects due to the variations in viscosity,
elastic shear resistance, cohesion and angle of internal friction,
along with changes in the relative and total thicknesses of the
layered sequence. The reader is referred to Simpson (2006) for
a study on the influence of erosion and sedimentation on defor-
mation which is not treated further here.

3.1. General characteristics of faulting and folding

When an elastic–plastic layer is compressed over a weak (low
viscosity) décollement horizon the upper layer sometimes deforms
in a discontinuous manner that can be identified with faulting
(Fig. 3). Faulting in the simulations is characterised by shear
localisation leading to the formation of asymmetrical structures
and piggy-back basins. In the simplest case, deformation begins
near the (right hand) moving boundary and steps towards the
foreland (leftward) as new structures are progressively nucleated.
The result is the formation of a triangular-shaped wedge
comprising multiple foreland-verging thrusts and basins. Faults are
generally most active near the deformation front where vertical
rock uplift rates are the highest. However, episodic deformation
continues to occur well behind the deformation front as the thrust
wedge readjusts to accretion of new sediments and to surface mass
redistribution.

Under some conditions (outlined in more detail below), the
compression of an elastic–plastic layer over a low viscosity
décollement horizon leads to continuous deformation that can be
identified with folding (Fig. 4). These folds occur where the upper,
relatively strong layer deforms into a series of periodic, almost
symmetrical anticlines and synclines. Folds initially nucleate seri-
ally and propagate from the hinterland towards the foreland.
However, in marked contrast to faults, the folds propagate laterally
rapidly and quickly become established over the entire domain
where they form a series of low-amplitude undulations. While the
absolute uplift rates at the surface are similar to when faulting is
observed, the zone over which uplift is occurring at any one time
tends to be considerably wider during folding than faulting.
Subsequent deformation involves fold amplification and progres-
sive localisation onto the earliest-formed structures which may
become asymmetrical as fold limbs begin to fail by faulting.

3.2. Controls on folding versus faulting

Simulations indicate that folding is the dominant mode of
deformation when the décollement horizon has a relatively low
viscosity, when the competent elastic–plastic upper layer is rela-
tively thin compared to the thickness of the viscous substrate,
when the upper layer has a high elastic resistance and when the
total thickness of the sequence is relatively thin. If any of these
conditions are not satisfied, faulting dominates. Several examples
of transitions from folding to faulting are illustrated in Figs. 5–8. For
instance, whereas folding dominates for high values of the



Table 2
Summary of model runs presented. The following parameter values were constant in all runs: g¼ 1, E¼ 0.1. All non-dimensional parameters are defined in Table 1.

Model no. Figure no. R S B T C f fb

r80 Fig. 3 6.3� 10�6 0.23 0.0088 0.85 0.0024 30� 30�

r44 Fig. 4 6.3� 10�8 4.62 0.0088 0.7 0.0024 30� 30�

r44_30 Fig. 5a 6.3� 10�8 4.62 0.0088 0.7 0.0024 30� 30�

r48_30 Fig. 5a 6.3� 10�8 2.31 0.0088 0.7 0.0024 30� 30�

r47_30 Fig. 5a 6.3� 10�8 0.46 0.0088 0.7 0.0024 30� 30�

r43_30 Fig. 5a 6.3� 10�8 0.23 0.0088 0.7 0.0024 30� 30�

r24_20 Fig. 5b 6.3� 10�8 23.08 0.0088 0.6 0.0024 30� 30�

r7_20 Fig. 5b 6.3� 10�8 4.62 0.0088 0.6 0.0024 30� 30�

r27_20 Fig. 5b 6.3� 10�8 2.3 0.0088 0.6 0.0024 30� 30�

r126_30 Fig. 6a 6.3� 10�8 0.23 0.0088 0.9 0.0024 30� 30�

r125_30 Fig. 6a 6.3� 10�8 0.23 0.0088 0.8 0.0024 30� 30�

r122_30 Fig. 6a 6.3� 10�8 0.23 0.0088 0.7 0.0024 30� 30�

r124_30 Fig. 6a 6.3� 10�8 0.23 0.0088 0.6 0.0024 30� 30�

r116_30 Fig. 6a 6.3� 10�8 0.23 0.0088 0.5 0.0024 30� 30�

r105_40 Fig. 6b 6.3� 10�8 0.46 0.0088 0.9 0.0024 30� 30�

r39_40 Fig. 6b 6.3� 10�8 0.46 0.0088 0.8 0.0024 30� 30�

r47_40 Fig. 6b 6.3� 10�8 0.46 0.0088 0.7 0.0024 30� 30�

r117_30 Fig. 7 6.3� 10�8 0.46 0.0176 0.5 0.0024 30� 30�

r118_30 Fig. 7 6.3� 10�8 0.46 0.0132 0.5 0.0024 30� 30�

r116_30 Fig. 7 6.3� 10�8 0.46 0.0088 0.5 0.0024 30� 30�

r119_30 Fig. 7 6.3� 10�8 0.46 0.0066 0.5 0.0024 30� 30�

r19_30 Fig. 7 6.3� 10�8 0.46 0.0044 0.5 0.0024 30� 30�

r113_22 Fig. 8a 6.3� 10�6 2.3 0.0088 0.4 0.0024 30� 30�

r143_22 Fig. 8a 6.34� 10�7 2.3 0.0088 0.4 0.0024 30� 30�

r27_22 Fig. 8a 6.34� 10�8 2.3 0.0088 0.4 0.0024 30� 30�

r83_40 Fig. 8b 6.34 2.3 0.0088 0.85 0.0024 30� 0�

r76_40 Fig. 8b 6.34� 10�5 2.3 0.0088 0.85 0.0024 30� 0�

r80_40 Fig. 8b 6.34� 10�6 2.3 0.0088 0.85 0.0024 30� 0�

r77_40 Fig. 8b 6.34� 10�7 2.3 0.0088 0.85 0.0024 30� 0�

r68 Fig. 9 6.34� 10�6 0.46 0.0088 0.4 0.0024 30� 30�

r96_25 Fig. 10 6.3� 10�7 0.46 0.0088 0.7 0.006 30� 30�

r100_25 Fig. 10 6.3� 10�7 0.46 0.0088 0.7 0.0024 30� 30�

r95_25 Fig. 10 6.3� 10�7 0.46 0.0088 0.7 0.0012 30� 30�

r92_30 Fig. 11 6.3� 10�8 0.23 0.0088 0.8 0.0024 40� 40�

r13_30 Fig. 11 6.3� 10�8 0.23 0.0088 0.8 0.0024 20� 20�

r90_30 Fig. 11 6.3� 10�8 0.23 0.0088 0.8 0.0024 10� 10�
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normalised elastic shear modulus, decreasing the elastic shear
resistance causes the deformation belt to become narrower while
individual structures become progressively more localised and
asymmetrical related to faulting (Fig. 5a). Similarly, by increasing
the relative thickness of the upper layer (Fig. 6a), by increasing the
importance of gravity (e.g., increasing the total thickness of the
sequence, Fig. 7) or by increasing the viscosity in the décollement
layer (Fig. 8a) one passes from distributed folding to faulting. Fig. 8b
illustrates the point that simply the presence of a low viscosity
décollement is generally insufficient to ensure that deformation
takes place by folding. In this example, due to the both relatively
low elastic shear resistance of the upper layer and fact that the
décollement is relatively thin (compared to the simulation in
Fig. 8a), deformation is accommodated entirely by faulting, even
when the detachment horizon has a low viscosity.

Although it is relatively straightforward in these examples to
distinguish between folding and faulting, this is not always so. In
some cases, one observes no clear separation in space between
folding and faulting – i.e., parts of the domain may deform
symmetrically by folding whereas other parts deform by localised
asymmetrical faulting at the same time. In other instances, folds
may be observed to form first before the same structures evolve
subsequently by faulting. Sometimes, whether the actual structures
themselves are forming by folding or faulting at any one time is
ambiguous – i.e., one observes the formation of fold-like structures
which have sheared limbs. These features (e.g., see Fig. 9) illustrate
the complicated nature of, and close relationship between, folding
and faulting. Moreover, considered together with the large number
of controlling parameters, they make it difficult to precisely define
(in a predictive sense) the boundary between folding and faulting.

3.3. Factors influencing the style of deformation

The style of faulting in ductile-frictional wedges is strongly
influenced by the viscosity and thickness of the décollement zone
and the thickness of the upper competent layer. Steep narrow
wedges with strongly localised structures tend to be associated
with relatively high viscosities (Fig. 8b) and/or thin décollement
zones (Fig. 6b). In addition, high values of cohesion and angle of
internal friction (for the upper competent layer and décollement
zone) favor greater strain localisation and therefore steeper, nar-
rower wedges (Figs. 10 and 11). Purely friction wedges display
similar features, though individual structures show a strong
tendency to verge towards the foreland compared with their
viscous counterparts whose structures are more symmetrical,
including forethrusts and backthrusts (see Fig. 8b).

As with faulting, the nature of folding depends on various
physical parameters, the most important of which are thickness
and elastic shear resistance of the upper competent unit, the
thickness and viscosity of the décollement horizon and gravity.
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Both the fold wavelength and the rate of fold growth increase as the
elastic resistance increases (Fig. 5b) and the importance of gravity
decreases (Fig. 7). As the thickness ratio H1/H decreases (i.e., the
thickness of the décollement horizon becomes thick compared to
the upper competent layer) the wavelength decreases whereas the
fold growth rate increases (Fig. 6a). The viscosity of the décollement
zone has little effect on the fold wavelength but significantly
influences the fold growth rate (Fig. 8a).
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exaggeration) for a simulation where folding is the dominant mode of deformation (cf Fig.
4. Discussion

One of the primary motivations for this study was to provide an
answer to the question: what determines whether a sequence of
sedimentary rock subjected to layer-parallel compression will
predominantly fold or fault? Results of mechanical modelling
provide a partial answer to this question in that it has helped to
identify the main parameters controlling the boundary between
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as a function of horizontal distance after 10, 20 and 30% of convergence (no vertical
3). Parameter values are listed in Table 2.
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folding and faulting. In particular, folding dominates when the
décollement horizon has a relatively low viscosity, when the
competent elastic–plastic upper layer is relatively thin compared to
the thickness of the viscous substrate, when the upper layer has
a high elastic resistance and when the total thickness of the
sequence is relatively thin. Otherwise faulting dominates.

These results can be interpreted in terms of competing defor-
mation instabilities. Consider a simple visco-elastic two-layered
sequence containing small amplitude irregularities subjected to
layer-parallel compression. Linear instability analyses (e.g., see Biot,
1961) show that the amplitude of preexisting perturbations evolves
exponentially as a function of time at different rates (i.e., some
wavelengths will grow or decay more rapidly than others). The
wavelength which grows the fastest is known as the dominant
wavelength. The growth rate of the dominant wavelength is
important for determining the nature of deformation that will
eventually be observed after a finite amount of deformation. If the
maximum growth rate is large, folds will rapidly appear in the
competent layer. If, on the other hand, the maximum growth rate is
small (and positive), significant amplification will take a long time
and folding may be completely masked by shortening and homo-
geneous thickening of the competent layer. Now consider the
additional possibility that the upper competent layer can also
deform plastically leading to the formation of faults. What occurs
will depend on the competition between folding and faulting.
Folding will be the dominant mode of deformation if the maximum
growth rate for folding is large, otherwise faulting will occur.

This reasoning implies that the boundary between folding and
faulting will essentially be determined by the parameters control-
ling the growth rate for the folding of an elasto-plastic layer above
a viscous décollement. While a complete analysis of this problem is
beyond the scope of this study some useful results have already
been published. For example, several studies have investigated the
instability of compressed (under pure shear) elastic films above
viscous detachments in the absence of gravity (Huang and Suo,
2002a,b). In the limit where the thickness of the viscous layer is
small, the growth rate is (Huang and Suo, 2002b):

a ¼ EkHeðEHyÞ3

144m
�
1� n2

�ð12e0ð1þ nÞ � ðkHeÞÞ2 (29)

where He is the thickness of the upper elastic layer, Hy is the
thickness of the viscous layer, m is the viscosity of the lower weak
layer, E is Young’s modulus, n is Poisson’s ratio, e0 is the initial strain
(here assumed to be positive in compression) and k is the wave-
number of the perturbation. The fastest growing wavenumber is

km ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8e0ð1þ nÞ

p
He

(30)

and the corresponding growth rate is
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am ¼
16E

9m
�
1� n2

��e0ð1þ nÞHy

He

�3

(31)

Equation (31) shows that the fastest growing wavelength increases
as a function of the elastic resistance, the thickness ratio Hy/He and
the initial compressive strain while it decreases as a function of the
viscosity of the décollement horizon. For example, if the décolle-
ment has a low viscosity, viscous deformation can take place
rapidly over considerable distances enabling perturbations in the
upper competent unit to amplify. However, as the décollement
becomes thin, the viscous material has increasing difficulty in
flowing to accommodate deformation of the competent layer.
These predictions are in qualitative agreement with, and provide an
explanation for, the trends observed in numerical simulations
outlined above (see Section 3.1). Although the effects of gravity
have been neglected in the derivation of these results, other studies
(e.g., Biot, 1961; Schmalholz et al., 2002) have shown that gravity
has a stabilizing effect on folding. Once again this is consistent with
the numerical simulations in that folding dominates when the total
sequence thickness is small, but that as the thickness is increased,
faulting dominates because fold amplification rates decrease.

How large does the fold growth rate has to be in order for
folding to dominate over faulting? A preliminary analysis of this
question can be addressed by comparing the time needed for rapid
fold amplification with the time necessary to generate faults. The
time required for a given amplification due to folding tf is given by

tf ¼
1

am
ln A (32)
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where am is the maximum growth rate, A is the amplification factor
(i.e., the ratio of the amplitude to the initial amplitude) and ln is the
natural logarithm. The amplitude factor A must be sufficiently large
for folding to occur (e.g., A¼ 1000 for explosive folding, Biot, 1961).
Introducing Equation (31) into (32) leads to

tf ¼
9

16
m
�
1� n2

�
H3

e lnðAÞ
Ee3ð1þ nÞ3H3

y

(33)

This time can be compared with the characteristic faulting time
which can be estimated as the time needed for elastic stresses to
build up everywhere to the Mohr–Coulomb failure envelope (from
an initially unstressed state). Consider an elastic material under
plane strain conditions for which the stress–strain relations are

s1 ¼
�

En

ð1þ nÞð1� 2nÞ þ
E

1þ n

�
e1 þ

En

ð1þ nÞð1� 2nÞe2 (34)

s2 ¼
�

En

ð1þ nÞð1� 2nÞ þ
E

1þ n

�
e2 þ

En

ð1þ nÞð1� 2nÞe1 (35)

where E is Young’s modulus, n is Poisson’s ratio, e are strains and s

are stresses in the 1 (horizontal) and 2 (vertical) directions. Solving
Equation (35) for e2, and substituting the result into (34) gives an
equation for the horizontal stress as a function of the horizontal
strain and the vertical stress:

s1 ¼
�

En

ð1þ nÞð1� 2nÞ þ
E

1þ n

�
e1

�
n
�
� s2 þ s2nþ 2s2n2 þ Ene1

�
ð1þ nÞð2n� 1Þðn� 1Þ (36)

The horizontal stresses increase as a function of compressive strain
until the elastic limit is attained. The maximum horizontal stress at
the Mohr–Coulomb failure surface is given by:
s1 ¼
1þ sin f

1� sin f
s2 þ

2c cos f

1� sin f
(37)

where f is the angle of internal friction and c is the rock cohesion.
Equating Equations (36) and (37), assuming the maximum vertical
stress is given by the lithostat (i.e., s2¼ rg(HeþHy), introducing the
horizontal strain rate ð_e ¼ e=tpÞ and solving for tp yield a relation
for the time for stresses at the base of the entire sequence to build
up to the failure surface

tp ¼
ð1þ nÞð2n� 1� sin fÞrgðHe þ HyÞ

_eEðsin f� 1Þ

þ cos fð1þ nÞð2cn� 2cÞ
_eEðsin f� 1Þ (38)

The plastic time tp increases as a function of the total thickness, the
cohesion and the angle of internal friction whereas it decreases as
a function of Young’s modulus and the strain rate. Note that
a similar relation for tp was derived by Gerbault (2000).

These results can be interpreted as follows. If tf< tp one can expect
folding to dominate over faulting due to the rapid nature of the folding
instability. On the other hand, when tf> tp, the folding instability is so
slow that faulting will occur before significant fold growth can occur.
The boundary between faulting and folding can be found by equating
Equations (33) and (38) (i.e., tf¼ tp). This boundary is illustrated in
Fig.12 as a function of the thickness ratio and the normalised viscosity
in the ductile layer. Folding is favored when the lower ductile layer is
relatively thick and has a relatively low viscosity whereas the
converse is true for faulting. Though this boundary should be viewed
as schematic, since it is based on a simplified model which has many
parameters, it is nevertheless consistent with, and therefore helps to
interpret, results of the numerical simulations.

This work is generally consistent with previous work focusing
on folding versus faulting. For example, Erickson (1996) showed



r113_22

r27_22

In
cr

ea
si

ng
 d

et
ac

hm
en

t v
is

co
si

ty

R=6.34x10-8

R=6.34x10-6

0 1

1

R=6.34x10-7

r143_22

r77_40

R=6.34x10-7

r76_40

r83_40

R=6.34x10-5

R=6.34 (frictional)

In
cr

ea
si

ng
 d

et
ac

hm
en

t v
is

co
si

ty

r80_40

R=6.34x10-6

0

1

1

a

b
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that for elastic–plastic materials, large strength contrasts and thick,
weak décollement layers favor folding due to rapid fold amplifi-
cation. Similar conclusions were also reached by Johnson (1980)
though he studied layers embedded within an infinite media and
thus had no influence on the thickness of a lower detachment
horizon. Using a somewhat different approach, Jamison (1992)
postulated that the fold–thrust style which develops reflects
a fundamental competition between folding and thrusting and
depends on which instability surface is intersected first along any
given stress path. He suggested that the buckling surface is likely to
be the initial intersect of the stress path only at relatively shallow
burial depths. At greater depths, the faulting instability surface is
more likely to be the initial intersect. This suggestion has been
confirmed within this work. In a field-based study, Pfiffner (1993)
suggested that one of the most important parameters governing
folding versus faulting is the thickness ratio of the mechanically
weak to strong layers (see also Wissing et al., 2003). He showed that
a low ratio favors imbricate thrusting and harmonic folding
whereas a high value favors detachment and disharmonic folding.
Once again, these results are broadly consistent with the present
study.

Results are consistent with the occurrence of fold belts in areas
such as the Zagros where relatively resistant carbonate rocks
overlie a thick salt layer (Davis and Engelder, 1985). However, since
several conditions must be satisfied in order for folding to domi-
nate, faulting is also expected to be commonly observed in such
regions, as is typically the case.
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causes deformation to become more localised and for the vergence on individual structure
An unexpected result of this work is the importance of elasticity
in governing the style of deformation. As noted above, folding
requires not only a weak detachment but also that the cover rocks
have a relatively high elastic shear modulus (amongst other
factors). This may explain why it is typical to observe faults not folds
in analogue modelling studies involving sand (which has no
significant elastic behaviour) resting on a low viscosity décollement
(e.g., Costa and Vendeville, 2002; Bonini, 2007).

5. Conclusions

Mechanical modelling has been used to investigate controls on
folding versus faulting when layered visco-elasto-plastic sedi-
mentary sequences are subjected to layer-parallel compression.
Results indicate that folding is the dominant mode of deformation
when fold amplification rates are rapid. This occurs when (1) the
décollement layer is thick relative to the cover sequence (2) the
décollement layer has a low viscosity (3) the cover sequence has
a high elastic shear modulus and (4) the total thickness of the entire
sequence is relatively small (i.e., the influence of gravity is
minimal). If any of these conditions are not satisfied, fold amplifi-
cation rates will be so slow that stresses will reach the failure
envelope before significant fold amplification occurs. In this case,
faulting is predicted to be the dominant mode of deformation.

These results indicate that the nature of deformation that
develops reflects the competition between two fundamentally
different instabilities: folding and faulting. Whereas faulting can be
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lement) on the style of deformation after 30% convergence. Increasing the friction angle
s to be more varied. Parameter values are listed in Table 2.
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viewed as the default mode, folding tends to require special
conditions, such as large strength contrasts and thick, low strength
décollement zones. This provides an explanation for why even
when deformation occurs above a thick viscous (e.g., salt) detach-
ment, faulting may be commonly observed.
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